День и ночь

Если бы не было времени, то не было бы ни одного дня. Если бы не было ни одного дня, то всегда стояла бы ночь. Но если бы всегда стояла ночь, то было бы время. Следовательно, если бы не было времени, оно было бы. В чем заключается причина данного недоразумения?

Ответ: Ошибка данного рассуждения заключается в утверждении о том, что если бы не было времени, то не было бы ни одного дня, а значит, всегда стояла бы ночь. Как раз наоборот — если бы не было времени, то не могло бы быть ни одного дня и ни одной ночи, ведь понятие ночи (как и понятие дня) относится именно ко времени (и день, и ночь — это некие временные интервалы).

Возраст отца

— Сколько лет твоему отцу? — спрашивают мальчика.
— Столько же, сколько и мне, — невозмутимо отвечает он.
— Как такое возможно?
— Очень просто: мой отец стал моим отцом только тогда, когда я родился, ведь до моего рождения он не был моим отцом, значит, моему отцу столько же лет, сколько и мне.

Верно ли это рассуждение? Если нет, то какая ошибка в нем допущена?

Ответ: Рассуждение, конечно же, неверно. Эффект его внешней правильности достигается благодаря употреблению понятия «возраст отца» в двух разных смыслах: возраст отца как возраст человека, который является этим отцом, и возраст отца как количество лет отцовства. Кстати, во втором значении понятие «возраст», как правило, не употребляется: обычно под словосочетанием «возраст отца» понимается возраст этого человека, а не что-либо иное.

1 = 1

Вот доказательство того, что 1=1:

1. 1=1
2. Одну единицу обозначаем за Х, вторую за У, получается Х=У;
3. Умножаем обе части тождества на Х, получаем Х2=ХУ;
4. Из обеих частей тождества отнимаем У2, получаем Х2 - У2=ХУ - У2;
5. Левую часть раскладывем как разность квадратов, а в правой выносим У за скобку, получаем: (Х-У)(Х+У)=У(Х-У);
6. Сокращаем обе части на (Х-У), получаем: Х+У=У
7. Подставим вместо Х и У единицы, получим: 1+1=1, т.е. 2=1.

Где здесь ошибка?

Ответ: В пункте 6, при сокращении на (Х-У), необходимо обе части разделить на данную разность. Но подставив в нее значения Х и У, равные 1, мы получим 0, а на 0, как известно, делить нельзя.

Глаза

Для того, чтобы видеть, совсем не обязательно иметь глаза. Без правого глаза мы видим. Без левого тоже видим. А поскольку кроме левого и правого глаза других глаз у нас нет, то оказывается, что ни один глаз не является необходимым для зрения. Верно ли это утверждение? Если нет, то какая ошибка в нем допущена?

Ответ: В задаче, из "Без правого глаза мы видим. Без левого тоже видим." якобы следует "ни один глаз не является необходимым для зрения", то есть при этом делается допущение: "Без правого глаза мы видим следовательно правый глаз не необходим". Допущение не верно, а оно выставляется как очевидное. Это и есть момент ошибки.

О полупустой бочке

Полупустая бочка - это ведь то же, что и полуполная. Но если две половины равны, то должны быть равны и целые. Полупустая бочка равна полуполной - значит, пустая бочка должна равняться полной. Выходит, что пустой равен полному!
Почему получается такой несообразный вывод?

Ответ: Полупустая бочка есть не половина пустой бочки, а такая бочка, одна половина которой пуста, а другая - полна. Мы же рассуждали так, как будто слово "полупустая" значит "половина пустой бочки", а слово "полуполная" - "половина полной". Неудивительно, что при таком неправильном понимании мы пришли к неправильному выводу.

Утверждение Эпименида

По преданию, Эпименид утверждал, что все критяне лжецы. Верно ли это утверждение, если учесть, что сам Эпименид родом с острова Крит?

Ответ: Эпименид - легендарный греческий поэт, живший на Крите в VI в. до н. э. Он-то и был первым Рипом ван Винклем: по преданию, Эпименид проспал 57 лет.

Если предположить, что Эпименид солгал, то отрицанием утверждения "все критяне лжецы" будет утверждение "существует хоть один не лжец", причем это не Эпименид. В таком виде это будет верное утверждение.

Сколько песчинок образуют кучу?

Встретились два приятеля, стали разговаривать. Вдруг взгляд одного из них упал на кучу песка
- Видишь кучу песка? - спросил он. - А на самом деле ее нет.
- Почему? - удивился его приятель.
- Очень просто, - ответил он. - Давай рассудим: одна песчинка, очевидно, не образует кучи песка. Если n песчинок не могут образовать кучи песка, то и после прибавления еще одной песчинки они по-прежнему не могут образовать кучи. Следовательно, никакое число песчинок не образует кучи, т. е. кучи песка нет.

Ответ: Это "парадокс кучи". В приведенном рассуждении второй приятель воспользовался методом полной математической индукции. Однако этот метод нельзя применять в рассуждениях, подобных этой задаче, ибо в них не определено само понятие "кучи песчинок".